Seabed 2030 Arctic – Antarctic – North Pacific Mapping Meeting 2018 October 8-10, 2018 Stockholm

OCEAN MAPPING & DATA MANAGEMENT

Paola Travaglini Technical Advisor, Geomatics Canadian Hydrographic Service (CHS)

- Description of current and planned MB systems for CHS
- Techniques employed during acquisition of MB bathymetry in ice covered waters
- Oceans Protection Plan & Data Sources
- Data Coverage and availability

- Description of current and planned MB systems for CHS
- Techniques employed during acquisition of MB bathymetry in ice covered waters
- Oceans Protection Plan & Data Sources
- Data Coverage and availability

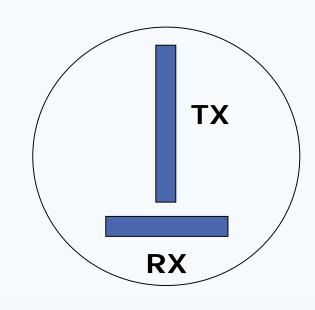
Surveying in Arctic Waters – The Assets

Multi-beam sonars in icebreakers

• 2014 - First deep water MB system was installed on CCGS Louis S. ST-Laurent for MB data acquisition in the Arctic in support of Canada's Law of The Sea Program.

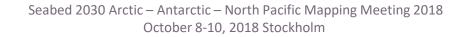
Technical specifications for multibeam systems

System	EM 2040	EM 2040 with Dual RX	EM 3002S	EM 3002D	EM 710	EM 302	EM 122
Operating frequency (kHz)	200 to 400	200 to 400	300	300	70 to 100	30	12
Range (m)	0.5 to 500	0.5 to 500	0.5 to 250	0.5 to 250	3 to 2000	10 to 7000	50 to 11000
Maximum coverage	>700m	>800m	300m	>300m	2500m	>8km	>30km
(cold sea, gravel)	140dg	200 dg	130 dg	200 dg	140 dg	150dg	150dg
	5.5x water depth	10x water depth	4x water depth	10x water depth	5.5x water depth	5.5x water depth	6x water depth
Beamwidths	TX:0.5, 1	TX:0.5, 1	TX: 1.5	TX: 1.5	TX: 0.5, 1, 2	TX: 0.5, 1, 2, 4	TX: 0.5 <mark>(1)</mark> 2
(degrees)	RX: 1	RX: 1	RX: 1.5	RX: 1.5	RX: 1, 2	RX: 1, 2, 4	RX: 124
	(at 300kHz)	(at 300kHz)			(at 100kHz)		-
System accuracy	>2cm	>2cm	~ 5-10 cm	~ 5- 10 cm	0.2 % x	0.2 % x	0.2 % x
					water depth	water depth	water depth
Maximum number of	Up to 800	Up to 1600	254	508	Up to 800	Up to 864	Up to 864
soundings per ping							
Pulse form	CW & FM	CW & FM	CW	CW	CW & FM	CW & FM	CW & FM
Pulse length	25us-12ms	25us-12ms	50us-400us	150us-400us	150us-120ms	0.7ms - 200ms	2ms - 100ms
Max pingrate (Hz)	50	50	40	40	>30	>10	>5
Transducer depth rating	6000m	6000m	500m, 1500m	500m, 1500m	250m	NA	NA
Ice protection	N/A	N/A	N/A	N/A	Yes	Yes	Yes



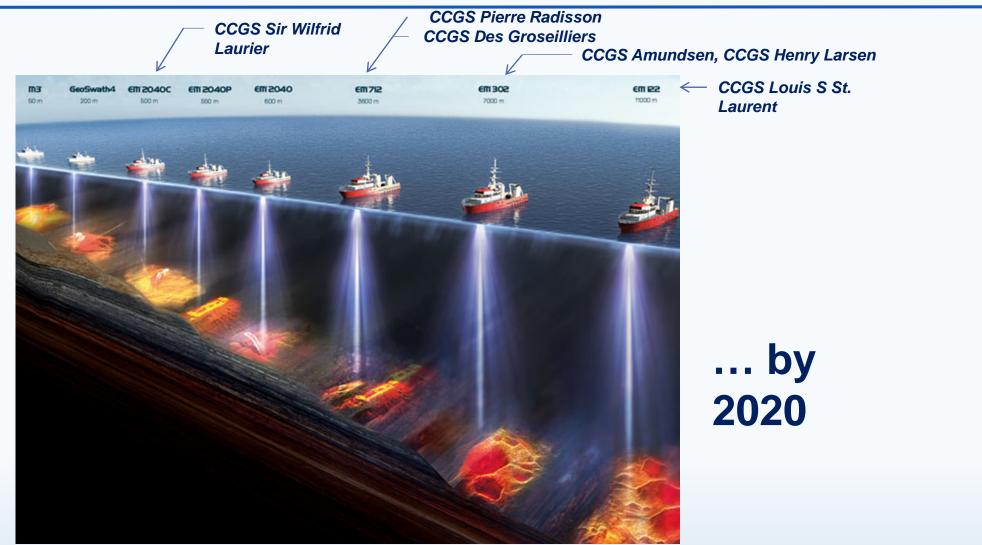
Surveying in Arctic Waters – The Assets (con't)

Multi-beam sonars in icebreakers


• EM122 TX and Rx Arrays in Mills Cross configuration.

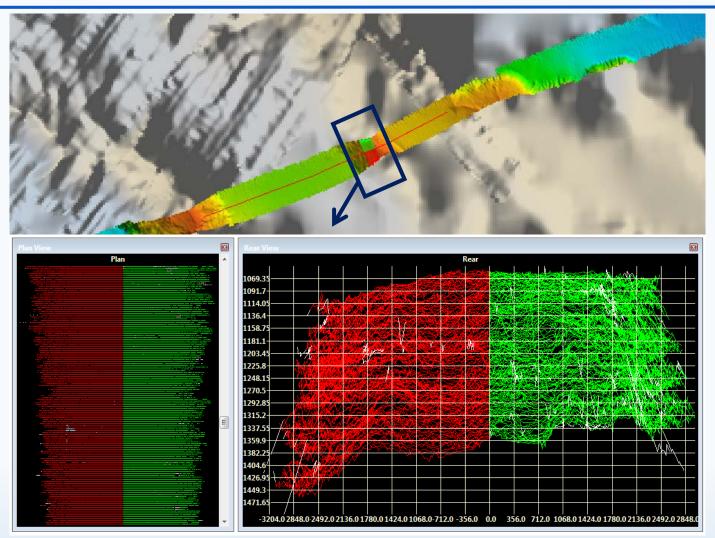
Surveying in Arctic Waters – The Assets (con't)

Multi-beam sonars in icebreakers


- Equipping the remaining icebreaking fleet with state-of-the-art multi-beam sonar systems will significantly accelerate the government's capacity to collect much needed hydrographic data in key areas.
 - 2017/2018 MBES for CCGS Des Groseilliers, Pierre Radisson and Henry Larsen procured
 - 2018/2019 CCGS Des Groseilliers, MBES installed during dry-dock period May – July
 - 2018/2019 MBES install CCGS Henry Larsen operational for 2018 field season
 - 2019/2020 first operation field season for CCGS Des Groseilliers
 - 2020 MBES install on CCGS Pierre Radisson
 - 2020/2021 field season: all three ships operational

Surveying in Arctic Waters – The Assets (con't)

- Description of current and planned MB systems for CHS
- Techniques employed during acquisition of MB bathymetry in ice covered waters
- Oceans Protection Plan & Data Sources
- Data Coverage and availability

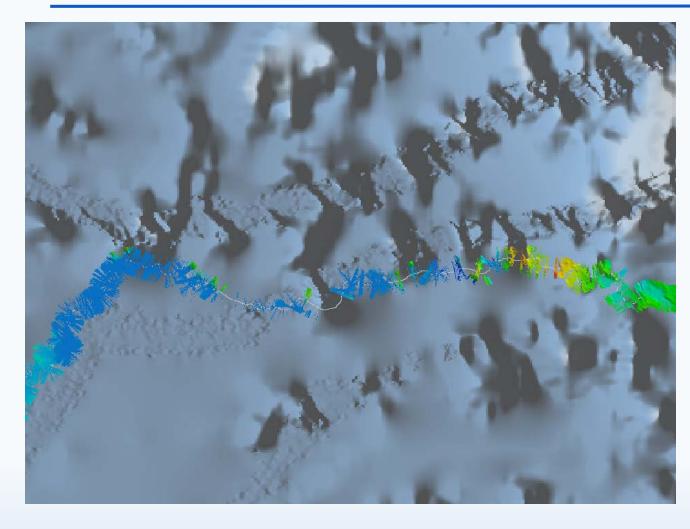


Example of data quality in light to no ice conditions

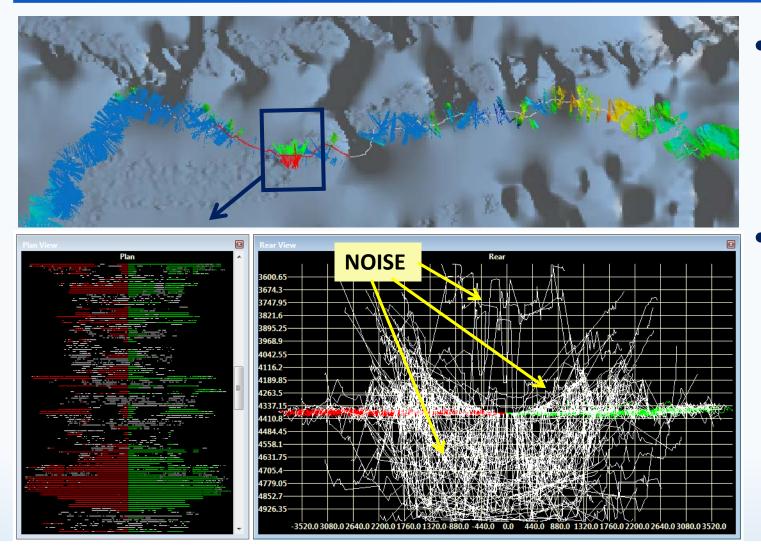
We see a full gridded data set and minimal noise in the data during MB acquisition in light ice conditions

CARIS HIPS/SIPS used to process MB data

What happens when we get into multi-year ice?



Seabed 2030 Arctic – Antarctic – North Pacific Mapping Meeting 2018 October 8-10, 2018 Stockholm



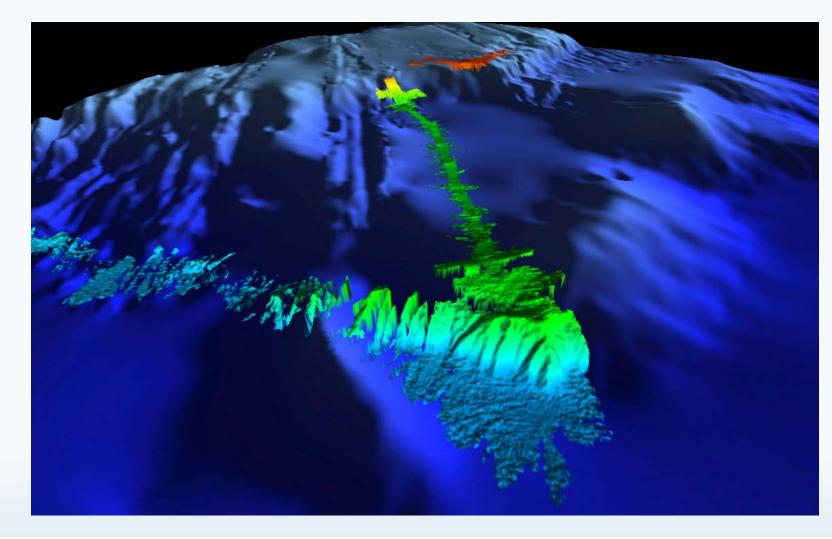
Gridded data of MB acquisition when navigating through multiyear ice

- We see a minimal gridded data set and an abundance of noise in the data during MB acquisition in heavy ice conditions
- By being vigilant and *forcing the depth* during
 pinging, less beams are
 dropped and the system is
 able to recover in a more
 timely fashion

CARIS HIPS/SIPS used to process MB data

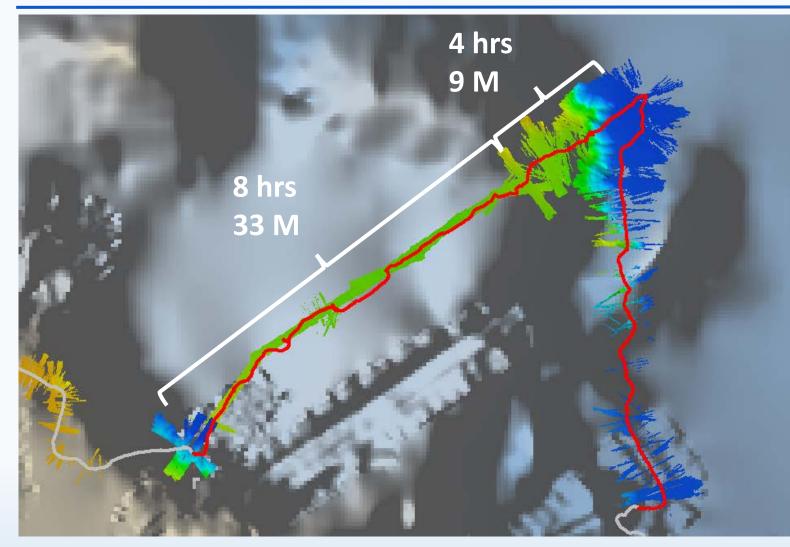
Observations during acquisition :

Parameters - Depth settings

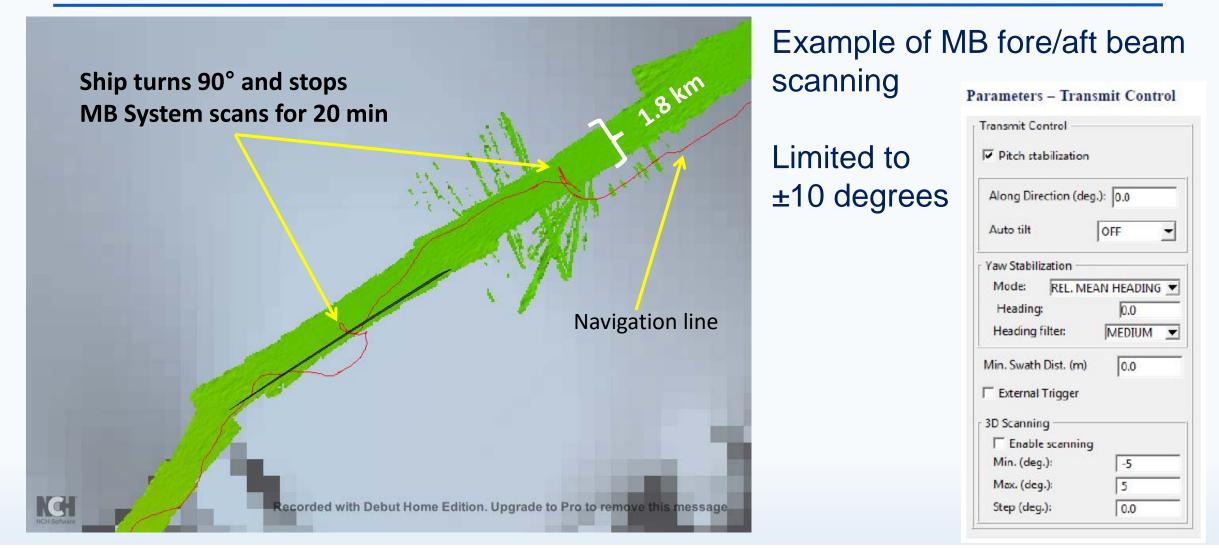

Force Depth (m) 0	
/lin. Depth (m)): 2	
1ax. Depth (r	1): 150	2
Dual swath mo	de: OFF	<u>_</u>
Ping Mode:		•
FM disable		

Kongsberg SIS

- As the vessel moves through heavy ice the MB system can easily loose bottom tracking as ice strikes the hull.
 - Setting a narrow Min Max Depth range will also help the system in bottom tracking under difficult conditions.
- Forcing the depth will cause the system to set its gain and range windows accordingly, and ignore its own findings about where the bottom is.
- In both cases, the operator must then monitor the actual depth closely, and adjust the depth window as often as required.



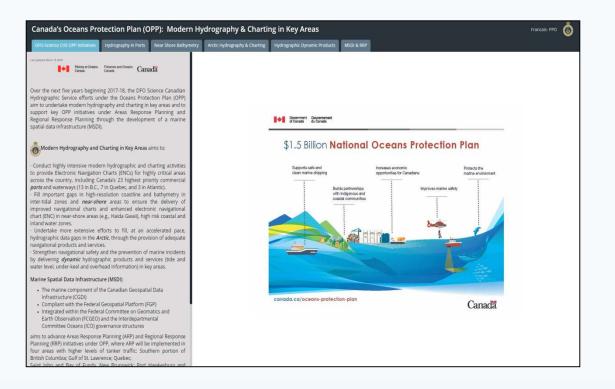
Technique employed in heavy ice conditions and when full detection is required



Turn and Scan technique:

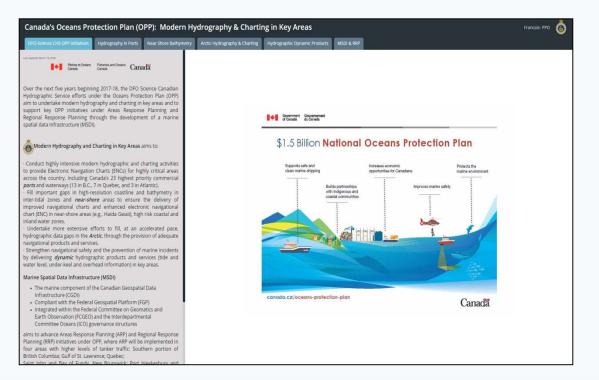
4 hrs 9M of MB vs 8 hrs 33M of MB

- Description of current and planned MB systems for CHS
- Techniques employed during acquisition of MB bathymetry in ice covered waters
- Oceans Protection Plan & Data Sources
- Data Coverage and availability



Canada's Oceans Protection Plan

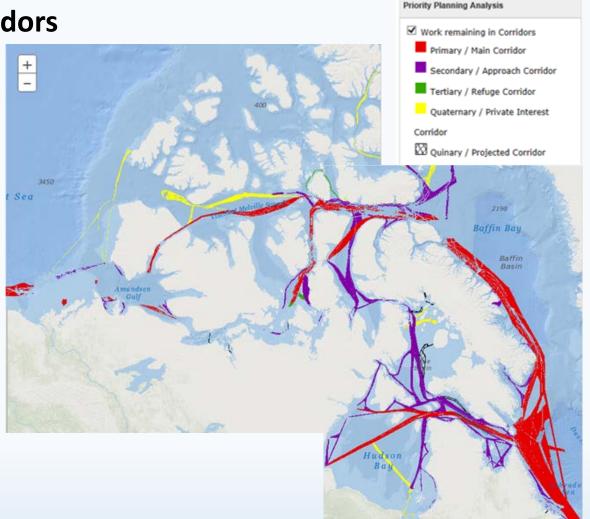
- In November 2016, the Prime Minister launched the \$1.5-billion Oceans Protection Plan, the largest investment ever made to protect Canada's coasts and waterways, while also growing Canada's economy.
- The Government announced an investment of close to \$20 million over five years for modern and improved hydrography and charting in areas of high traffic, commercial ports and waterways, to make navigation safer.



Canada's Oceans Protection Plan (con't)

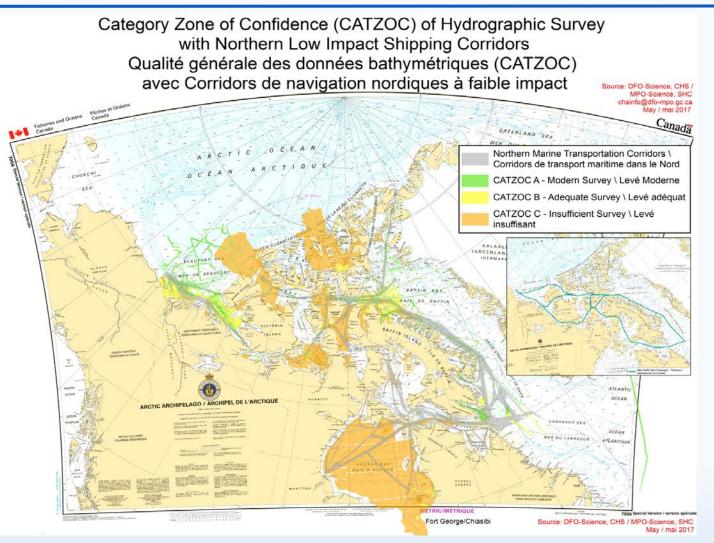
OPP sub-initiative *Modern Hydrography and Charting in Key Areas* is directed at CHS specifically

- 5 inter-related pillars:
 - 23 Ports and waterways
 - Arctic
 - Near-shore bathymetry filling gaps
 - Dynamic hydrographic products and services
 - Regional response planning / MSDI
- Success hinges on the rapid processing and throughput of high volumes data into accessible information, services, and products (to a lesser extent).
- Opportunity for CHS to transform to a data-centric organization and to prepare for S-100 implementation



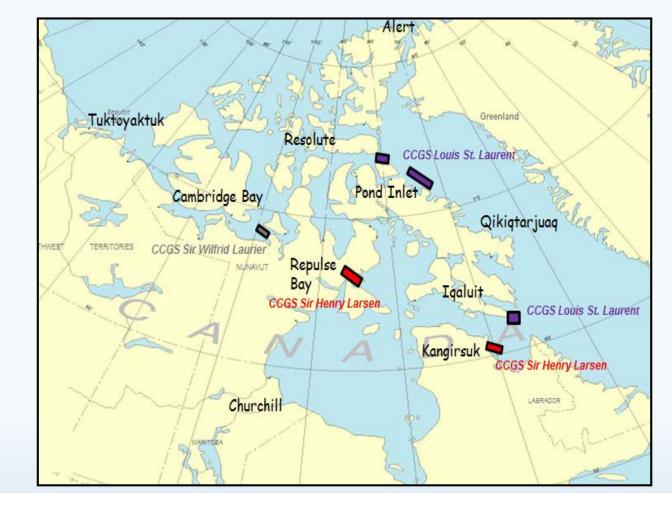
Surveying in Arctic Waters – The Plan

Proposed Low Impact Shipping Corridors


- Graphic illustrates areas in corridors that are not surveyed to modern standards
- At present, 28% of the combined areas of the Primary and Secondary Draft Low Impact Shipping Corridors¹ are adequately surveyed (surveyed to 'adequate' or 'modern' standards).
- Many areas within corridors are covered with either spot soundings, track lines (recon.), or unsurveyed.
- Client consultations are a significant driver

Surveying in Arctic Waters – The Plan

 Category of Zone of Confidence for Chart Data Quality

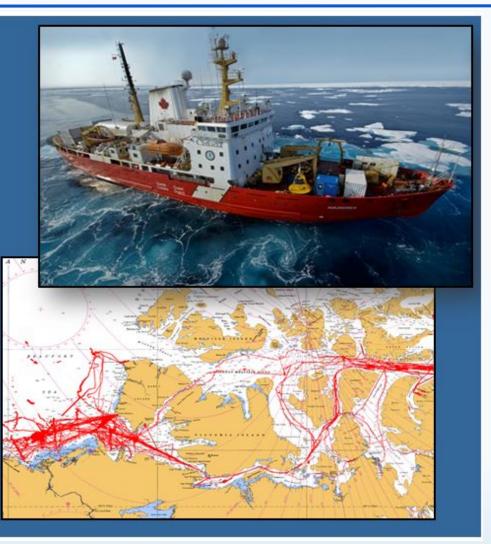


Surveying in Arctic Waters – The Plan (con't)

CHS Survey Plan for the Arctic during the 2018 Season

General Location	Data Acquisition Agency	Rationale for Survey
SW King William Is.	dfo (chs) Completed	 Priority areas per CCGS-industry led Arctic Marine Advisory Board meetings expansion of Secondary Low Impact Shipping Corridor coincident area with CCG Aids Maintenance operations Alignment with CHS Priority Planning Tool
Approaches to Repulse Bay and Kangirsuk	dfo (chs) Ongoing	 Priority areas per CCGS-industry led Arctic Marine Advisory Board meetings Repulse Bay chart poor quality – requires new bathymetry Alignment with regional production plan Kangirsuk priority area #7 for CCG Aids to Navigation Unit
NE / SE Baffin Is.	dfo (chs) Completed	 Alignment with CHS Priority Planning Tool expansion of Primary Low Impact Shipping Corridor depths best utility of sonar on CCGS LSSL data for NE Baffin Island will support DFO's Oceans agenda (MPA)
Ungava Bay Corridors - 2017 contract extension	McGregor Geoscience Ltd.	 Priority for ship operators (supports community resupply) Priority areas per CCGS-industry led Arctic Marine Advisory Board meetings Alignment with regional production plan
Ungava Bay Corridors	Seaforth Geosurveys Inc.	 Priority for ship operators (supports community resupply) Priority areas per CCGS-industry led Arctic Marine Advisory Board meetings Alignment with regional production plan

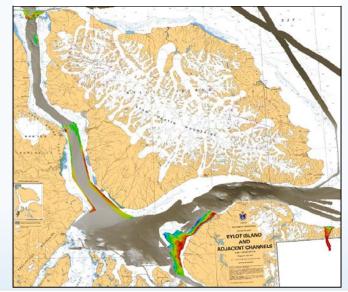
Canada



Surveying in Arctic Waters – Sources (con't)

- CCGS Amundsen MBES operational since 2003, CHS has been a partner with Arctic Net (Amundsen Science) since the beginning.
- Data from CCGS Amundsen represents ~65% of all of CHS' modern hydrography in the Arctic.
- Data from CCGS Amundsen has been incorporated on 83 charts to date.
- MBES is an EM302, mid-water mapping system.

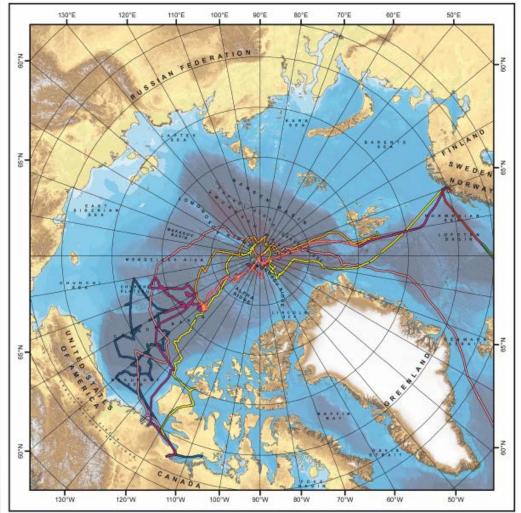
• Amundsen's success established a blueprint for the rest of the icebreaking fleet.

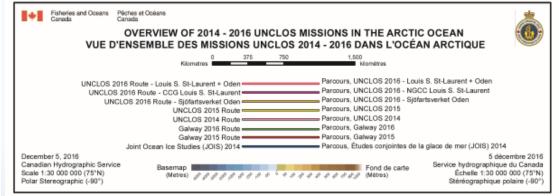

Surveying in Arctic Waters – Sources (con't)

Canadian Ocean Mapping Research and Education Network

2014 – HMCS Kingston

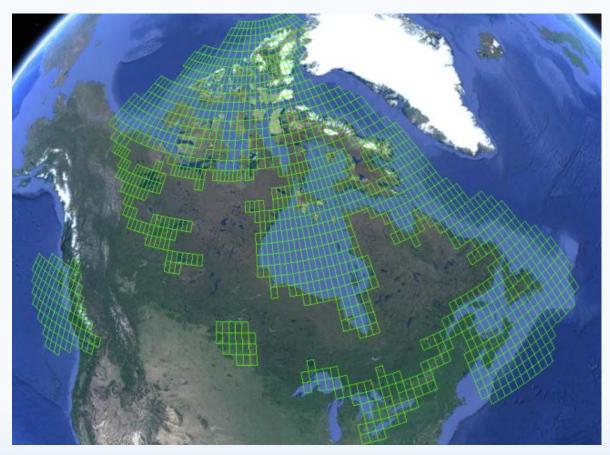
Seabed 2030 Arctic – Antarctic – North Pacific Mapping Meeting 2018 October 8-10, 2018 Stockholm


- Description of current and planned MB systems for CHS
- Techniques employed during acquisition of MB bathymetry in ice covered waters
- Oceans Protection Plan & Data Sources
- Data Coverage and availability



Canadian Multibeam contributed to IBCAO

- Collected 2014-2016
- 90 000 line-km of MB contributed to IBCAO
- 100m grid resolution provided



NONNA - 100

- NON NAvigational products follows S-102 grid schema for the level 2 of S-102
- 100m gridded bathymetry cells available for free on the Canadian Federal Geospatial Platform (FGP) as Open Maps and Open Data
- Will be released through the Canadian Federal Geospatial platform before the end of 2018 calendar year

For information: Paola Travaglini (902) 407-4776 Paola.Travaglini@dfo-mpo.gc.ca chsinfo@dfo-mpo.gc.ca

