Using seismic reflection data to Map the Gaps

Vaughan Stagpoole
Jenny Black
Aleksandra Henderson
July 2023
Using seismic reflection data

Can fill gaps in multibeam data coverage

Seismic data is optimised for sub-seabed targets

However, it is fundamentally the same as multibeam data
Uses a sound source and accurate time measurement of sound reflections

Seismic interpreters routinely interpret the seabed horizon

This talk will show use of seismic reflection data to derive seabed depth and show some results

Izzatdin et al. (2023)
Using seismic reflection data
Multibeam coverage and seismic reflection in Taranaki, New Zealand
Seismic reflection data

Seismic interpreters ‘pick’ horizons

Picks can be automated for large datasets

Interpretation stored as x, y, TwT

$$Depth = \text{Velocity}_{\text{water}} \times \frac{\text{TwT}}{2}$$

Issue:
Datum for the seismic data
- streamer depth, bulk shifts, sample rate
Use independent source of bathymetry data to derive “velocity” (Pseudo-velocity) for the area covered by seismic data

Pseudo-velocity will include correction for streamer depth and bulk shifts

\[
Pseudo\text{-velocity} = \frac{Depth^{\text{independent}}}{TwT^{\text{seis}}}
\]

LINZ soundings data gridded (we use GMT) to derive a pseudo-velocity map

\[
Depth = pseudo\text{-velocity} \times TwT
\]
Seismic reflection TwT - depth

Use independent source of bathymetry data to derive “velocity” for the area covered by seismic data

“Velocity” will include correction for streamer depth and bulk shifts

LINZ soundings data gridded (we use GMT) to derive a velocity map

“Velocity” = Depth_{(independent)} / TwT_{(seis)}

Depth = “Velocity” * TwT
Seismic reflection TwT - depth

Pseudo-velocity map for 3D seismic reflection dataset

Extract pseudo-velocity from this grid at the location of every TwT pick and determine depth
This dataset has a 12.5 m spacing (can be resampled for Seabed2030 use)

Accurate to c. +/- 2 m (sample rate dependent)

Some artifacts in data (streaks and steps) acquisition/processing

Small features are able to be seen in data
Deepwater seismic reflection dataset

High resolution image of channels, canyons and pockmarks
Near shore seismic reflection dataset

Mound-like feature

600 m across
20 m high

Steps in data due to data sample rate (500 HZ)
Sediment waves (?)
1500 m wavelength
5 m amplitude
Summary

Seismic reflection data can be converted to bathymetry using widely spaced independent bathymetry dataset to eliminate datum issues.

Provides high resolution data suitable for Seabed2030.

Useful in areas where there is no multibeam data – mapping the gaps.

Future:
1. Seabed2030 could request data from petroleum explorers and multi-client seismic companies (only need the seabed pick).
2. GNS is working on 2D seismic datasets.